Daylighting assessment of window layouts and architectural elements in early design stages

0
Daylighting assessment of window layouts and architectural elements in early design stages
  • Son, P. V. H. & Huyen, V. T. B. Optimizing daylight in west-facing facades for LEED V4.1 compliance using metaheuristic approach. Sci. Rep. 13, 21942. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou, S. et al. Multi-objective optimization of daylighting performance and solar radiation for Building geometry using a hybrid evolutionary algorithm. Sci. Rep. 15, 26644. (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. & Boubekri, M. Impact of daylight exposure on health, well-being and sleep of office workers based on actigraphy, surveys, and computer simulation. J. Green. Building. 15, 19–42. (2020).

    Article 

    Google Scholar 

  • Dogrusoy, I. T. & Tureyen, M. A field study on determination of preferences for windows in office environments. Build. Environ. 42, 3660–3668. (2007).

    Article 

    Google Scholar 

  • Reinhart, C. F. & LoVerso, V. R. M. A rules of thumb-based design sequence for diffuse daylight. Lighting Res. Technol. 42, 7–31. (2010).

    Article 

    Google Scholar 

  • Vanhoutteghem, L., Skarning, G. C. J., Hviid, C. A. & Svendsen, S. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy Build. 102, 149–156. (2015).

    Article 

    Google Scholar 

  • Cammarano, S., Pellegrino, A., Lo Verso, V. R. M. & Aghemo, C. Assessment of daylight in rooms with different architectural features. Building Res. Inform. 43, 222–237. (2015).

    Article 

    Google Scholar 

  • Kose, B. & Kazanasmaz, T. Applicability of a prismatic panel to optimize window size and depth of a south-facing room for a better daylight performance. Light Eng. 28, 63–67. (2020).

    Article 

    Google Scholar 

  • Dubois, M. C. & Flodberg, K. Daylight utilisation in perimeter office rooms at high latitudes: investigation by computer simulation. Lighting Res. Technol. 45, 52–75. (2012).

    Article 

    Google Scholar 

  • Acosta, I., Campano, M. Á. & Molina, J. F. Window design in architecture: analysis of energy savings for lighting and visual comfort in residential spaces. Appl. Energy. 168, 493–506. (2016).

    Article 

    Google Scholar 

  • Berardi, U. & Anaraki, H. K. The benefits of light shelves over the daylight illuminance in office buildings in Toronto. Indoor Built Environ. 27, 244–262. (2016).

    Article 

    Google Scholar 

  • Do, C. T. & Chan, Y-C. Daylighting performance analysis of a facade combining daylight-redirecting window film and automated roller shade. Build. Environ. 191, 107596. (2021).

    Article 

    Google Scholar 

  • Wang, X., Teigland, R. & Hollberg, A. Identifying influential architectural design variables for early-stage Building sustainability optimization. Build. Environ. 252, 111295. (2024).

    Article 

    Google Scholar 

  • Shen, H. & Tzempelikos, A. A parametric analysis for the impact of facade design options on the daylighting performance of office spaces. Internal High Performance Buildings Conference (2010).

  • Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B. & Yoon, Y. Optimization of Building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renew. Energy. 50, 522–531. (2013).

    Article 

    Google Scholar 

  • Goia, F. Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Sol. Energy. 132, 467–492. (2016).

    Article 

    Google Scholar 

  • Rubeis Td, Nardi, I., Muttillo, M., Ranieri, S. & Ambrosini, D. Room and window geometry influence for daylight harvesting maximization – Effects on energy savings in an academic classroom. Energy Procedia. 148, 1090–1097. (2018).

    Article 

    Google Scholar 

  • Do, C. T. & Chan, Y-C. Evaluation of the effectiveness of a multi-sectional facade with Venetian blinds and roller shades with automated shading control strategies. Sol. Energy. 212, 241–257. (2020).

    Article 

    Google Scholar 

  • You, W., Qin, M. & Ding, W. Improving Building facade design using integrated simulation of daylighting, thermal performance and natural ventilation. Build. Simul. 6, 269–282. (2013).

    Article 

    Google Scholar 

  • Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. (2007).

    Article 

    Google Scholar 

  • Kharvari, F. A. & Field-validated Multi-objective optimization of the shape and size of windows based on daylighting metrics in Hot-summer mediterranean and dry summer continental climates. J. Daylighting. 7, 222–237. (2020).

    Article 

    Google Scholar 

  • Escobar, I., Orduna-Hospital, E., Aporta, J. & Sanchez-Cano, A. Efficient daylighting: the importance of glazing transmittance and room surface reflectance. Buildings 14 (2024).

  • Volf, C., Petersen, P. M., Thorseth, A., Vestergaard, S. & Martiny, K. Daylight quality: high-transmittance glass versus low transmittance glass – effects on daylight quality, health, comfort and energy consumption. Ann. Med. 56, 2297273. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wienold, J., Jain, S. & Andersen, M. Transmittance thresholds of electrochromic glazing to achieve annual low-glare work environments. E3S Web Conf. 362. (2022).

  • Illuminating Engineering Society. IES Spatial daylight autonomy (sDA) and annual sunlight exposure (ASE) (Standard LM-83-12). Illuminating Eng. Soc. North. America (2012).

  • Khanh Phuong, N. T., Chan, Y-C., Do, C. T., Tuan, N. A. & Rinchumphu, D. A simulation-based workflow to calculate overall thermal transfer value when implementing daylighting-oriented shading control. J. Building Eng. 84, 108616. (2024).

    Article 

    Google Scholar 

  • USGBC. LEED v4.1 – Daylight, (accessed 1 August 2025); https://www.usgbc.org/credits/new-construction-schools-new-construction-retail-new-construction-data-centers-new-9

  • Alwetaishi, M. & Taki, A. Investigation into energy performance of a school Building in a hot climate: optimum of window-to-wall ratio. Indoor Built Environ. 29, 24–39. (2019).

    Article 

    Google Scholar 

  • Environmental Design Solutions Ltd & Tas, E. D. S. L. (accessed 1 August 2025); https://www.edsl.net/

  • Schwartz, Y. & Raslan, R. Variations in results of Building energy simulation tools, and their impact on BREEAM and LEED ratings: A case study. Energy Build. 62, 350–359. (2013).

    Article 

    Google Scholar 

  • Chi Fa, Wang, Y., Wang, R., Li, G. & Peng, C. An investigation of optimal window-to-wall ratio based on changes in Building orientations for traditional dwellings. Sol. Energy. 195, 64–81. (2020).

    Article 

    Google Scholar 

  • Autodesk. Ecotect Analysis Discontinuation, F. A. Q. (accessed 23 July 2024); https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/Ecotect-Analysis-Discontinuation-FAQ.html

  • Ibarra, D. I. & Reinhart, C. F. Daylight factor simulations – how close do simulation beginners ‘really’ get? Building simulation 2009 11, 196–203 (2009).

  • Vangimalla, P. R., Olbina, S. J., Issa, R. R. & Hinze, J. Validation of Autodesk Ecotect™ accuracy for thermal and daylighting simulations. Proceedings of the Winter Simulation Conference (WSC) 3383–3394 (2011).

  • Crawley, D. B. et al. EnergyPlus: creating a new-generation Building energy simulation program. Energy Build. 33, 319–331. (2001).

    Article 

    Google Scholar 

  • Ramos, G. & Ghisi, E. Analysis of daylight calculated using the energyplus programme. Renew. Sustain. Energy Rev. 14, 1948–1958. (2010).

    Article 

    Google Scholar 

  • Yun, G. & Kim, K. S. An empirical validation of lighting energy consumption using the integrated simulation method. Energy Build. 57, 144–154. (2013).

    Article 

    Google Scholar 

  • Reinhart, C. F. Tutorial on the use of daysim simulations for sustainable design. Ottawa: Institute for Research in Construction, National Research Council Canada (2006).

  • Reinhart, C. F. & Walkenhorst, O. Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy Build. 33, 683–697. (2001).

    Article 

    Google Scholar 

  • Acosta, I., Muñoz, C., Esquivias, P., Moreno, D. & Navarro, J. Analysis of the accuracy of the Sky component calculation in daylighting simulation programs. Sol. Energy 119, 54–67. (2015).

    Article 

    Google Scholar 

  • Bourgeois, D., Reinhart, C. F. & Ward, G. Standard daylight coefficient model for dynamic daylighting simulations. Building Res. Inform. 36, 68–82. (2008).

    Article 

    Google Scholar 

  • Subramaniam, S. & Mistrick, R. A more accurate approach for calculating illuminance with daylight coefficients. 2017 Annual IES Conference Oregon, USA IES (2017).

  • Ladybug Tools & Tools, L. (accessed 1 August 2025); https://www.ladybug.tools/

  • Alsharif, R., Arashpour, M., Golafshani, E., Bazli, M. & Mohandes, S. R. Ensemble machine learning framework for daylight modelling of various Building layouts. Build. Simul. 16, 2049–2061. (2023).

    Article 

    Google Scholar 

  • Hu, X., Zheng, H. & Lai, D. Prediction and optimization of daylight performance of AI-generated residential floor plans. Build. Environ. 279, 113054. (2025).

    Article 

    Google Scholar 

  • Wang, D., Place, W., Li, S., Liu, R. & Hu, J. A simple yet powerful dimensionality reduction method for annual daylighting prediction and its inverse process via pix2pix. J. Building Eng. 105, 112410. (2025).

    Article 

    Google Scholar 

  • Han, Y., Shen, L. & Sun, C. Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office Building design. Build. Environ. 200, 107932. (2021).

    Article 

    Google Scholar 

  • Ladybug, E. P. W. (accessed 1 August 1 2025); https://www.ladybug.tools/epwmap/

  • Robert, McNeel & Associates (accessed 1 August 2025);

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *